Stochastic cooling and 56 MHz SRF update for Run-14

W. Fischer

New longitudinal stochastic cooling equipment – M. Brennan et al.

New longitudinal stochastic pickup and kicker

Cu+Au store – new mode in 2012

Cu and Au have different

- intrabeam scattering growth rates $(\sim Z^4 N_b/A^2)$ $r_{\rm IBS,Au} \approx 2 \times r_{\rm IBS,Cu}$
- cooling rates (~1/N_b) r_{SC,Au} ≈ 3x r_{SC,Cu}

- Stores longer than Au+Au in Run-11 (~4h)
- But shorter than Cu+Au in Run-12 (~14h)
- Larger burn-off with Au+Au (cross sections ~7x larger)
- Burn-off loss >50% of total beam loss

รเบตาลรแต่ cooling

- Increase bunch intensity until loss at transition (previously: until ε increase)
- Larger ε before transition?

56 MHz SRF

- First superconducting RF system in RHIC
- Provides more longitudinal focusing (against IBS)
 30-50% more luminosity in small vertex
- Cavity delivered to tunnel last Friday (18 January 2014)
- Currently being connected
- Commissioning in Run-14, possibly performance impact at end of run

Ongoing: **56 MHz SRF, more long. focusing** (AIP FY08-11, \$4M)

Calculation by M. Blaskiewicz

Mock-up cryomodule assembly in 905

Cavity string assembly status

HOM coupler = coupling loop + filter

- Optimization of damping for all HOM modes up to 1 GHz, resulted in 4 HOM couplers.
- The couplers are inserted in an asymmetric configuration, which ensures that all modes are damped adequately.
- The NbTi flange will be cooled with helium.
- A high RRR copper rod inside the center conductor improves cooling of the loop. It is LHe-cooled.

56 MHz SRF in tunnel this morning (21 Jan 2014)

Commissioning plan

- 1. Warm testing.
- 2. Pre-Ops.
- 3. Cold testing/commissioning.

Warm testing

- Network Analyzer measurement of the Fundamental mode Damper (FD) coupling, $Q_i \sim 300$, when FD is fully inserted.
- The cavity quality factor at RT is ≈ 3.6×10³.
- Network Analyzer measurements:
 - Cavity frequency nominal 56.201 MHz at RT, 56.299 MHz when cold;
 - Coarse (stepper motor) tuner range, ± 25 kHz;
 - The cavity must be deformed if not within the range;
 - Fine (piezo) tuner range of 60 Hz;
 - Calibrate RF signals at RT.

Pre-Ops

- MPS tested and configured properly.
- With RHIC at 40 K:
 - Can provide cold He gas for cavity cooling;
 - Use FD to apply up to 1 kW RF for conditioning of multipacting
 can reach about 17 kV.

Cold testing/commissioning

- RHIC at 4 K, about two days available during PS testing:
 - Finish MP conditioning;
 - Signal calibration, preliminary LLRF set up, verify LLRF protection functions;
 - Check cavity performance (Q vs. V);
 - Verify tuner operation;
 - Characterize microphonics;
 - Measure HOM spectrum.
- Store commissioning:
 - Can continue testing as far as the cavity frequency is offset from the beam frequency;
 - Observe/measure beam reaction on FD withdrawal, measure HOM spectrum excited by beam;
 - Verify tuner control and cavity voltage response;
 - Verify proper system response when beam is dumped;
 - Characterize AC coupled IQ loop performance at very low cavity voltage, set up gains, etc.

S. Belomestnykh